Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility.
نویسندگان
چکیده
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an alpha- and beta-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin-mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and beta(1)-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase beta(1)-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin-mediated cell-cell adhesion requires the Na,K-ATPase beta-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the beta(1)-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.
منابع مشابه
Na,K-ATPase b-Subunit Is Required for Epithelial Polarization, Suppression of Invasion, and Cell Motility
*Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095; Departments of †Physiology and Urology, Weill Medical College of Cornell University, New York, New York 10021; ‡Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037; §Department of Pharmacology and Cell Biophysics, University of Cincinnati Med...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملDifferential localization of human nongastric H(+)-K(+)-ATPase ATP1AL1 in polarized renal epithelial cells.
The human H(+)-K(+)-ATPase, ATP1AL1, belongs to the subgroup of nongastric, K(+)-transporting ATPases. In concert with the structurally related gastric H(+)-K(+)-ATPase, it plays a major role in K(+) reabsorption in various tissues, including colon and kidney. Physiological and immunocytochemical data suggest that the functional heteromeric ion pumps are usually found in the apical plasma membr...
متن کاملRepression of Na,K-ATPase beta1-subunit by the transcription factor snail in carcinoma.
The Na,K-ATPase consists of two essential alpha- and beta-subunits and regulates the intracellular Na+ and K+ homeostasis. Although the alpha-subunit contains the catalytic activity, it is not active without functional beta-subunit. Here, we report that poorly differentiated carcinoma cell lines derived from colon, breast, kidney, and pancreas show reduced expression of the Na,K-ATPase beta1-su...
متن کاملبررسی سلولی تومور و مکانیابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1
Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2001